Российский математик Игорь Турканов нашел доказательство Гипотезы Римана

Дата публикации: 27 ноября 2016 года в 16:32.
Категория: Общество.

Математик Игорь Турканов представил научной общественности доказательство знаменитой Гипотезы Римана. В настоящее время ученые во всем мире проверяют работу Турканова. Пока никто из них пока не заявил о найденных ошибках.

Это может значить то, что мировая математическая наука находится на пороге события международного масштаба.

Гипотеза Римана появилась в 1859 году. Именно тогда Бернхард Риман представил ее научному миру. Гипотеза утверждает, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть ½.

С тех пор над этой гипотезой бились величайшие умы планеты, а ее саму назвали «Священным Граалем математики».

Доказательство или опровержение гипотезы Римана будет иметь далеко идущие последствия для теории чисел, особенно, в области распределения простых чисел. А это может повлиять на совершенствование информационных технологий.

Гипотеза Римана входит в список семи «проблем тысячелетия», за решение каждой из которых Математический институт Клэя (Clay Mathematics Institute, Кембридж, Массачусетс) выплатит награду в один миллион долларов США.

Таким образом, доказательство гипотезы может обогатить российского математика.

Согласно неписаным законам международного научного мира, успех Игоря Турканов полностью признают не раньше, чем через несколько лет. Тем не менее, его работа уже была представлена на Международной физико-математической конференции под эгидой Института прикладной математики им. Келдыша РАН в сентябре 2016 года.

Также отметим, что если найденное Игорем Туркановым доказательство Гипотезы Римана будет признано верным, то на счет российских математиков будет записано решение уже двух из семи «проблем тысячелетия». Одну из этих проблем – «гипотезу Пуанкаре» в 2002 году решил Санкт-Петербургский математик Григорий Перельман. При этом он отказался от полагавшейся ему премии в $1 млн от института Клэя.

СПИСОК СЕМИ МАТЕМАТИЧЕСКИХ «ПРОБЛЕМ ТЫСЯЧЕЛЕТИЯ»

Равенство классов P и NP

Если положительный ответ на какой-то вопрос можно быстро (за полиномиальное время) проверить (используя некоторую вспомогательную информацию, называемую сертификатом), то верно ли, что и сам ответ (вместе с сертификатом) на этот вопрос можно быстро найти? Задачи первого типа относятся к классу P, второго — классу NP. Проблема равенства этих классов является одной из важнейших проблем теории алгоритмов.

Гипотеза Ходжа

Важная проблема алгебраической геометрии. Гипотеза описывает классы когомологий на комплексных проективных многообразиях, реализуемые алгебраическими подмногообразиями.

Гипотеза Пуанкаре (доказана)

Считается наиболее известной проблемой топологии. Говоря более просто, она утверждает, что всякий трёхмерный «объект», обладающий некоторыми свойствами трёхмерной сферы (например, каждая петля внутри него должна быть стягиваема), обязан быть сферой с точностью до деформации.

Премия за доказательство гипотезы Пуанкаре присуждена российскому математику Григорию Перельману, опубликовавшему в 2002 году серию работ, из которых следует справедливость гипотезы Пуанкаре.

Гипотеза Римана

Гипотеза гласит, что все нетривиальные (то есть имеющие ненулевую мнимую часть) нули дзета-функции Римана имеют действительную часть 1/2. Её доказательство или опровержение будет иметь далеко идущие последствия для теории чисел, особенно, в области распределения простых чисел. Гипотеза Римана была восьмой в списке проблем Гильберта. В случае публикации контрпримера к гипотезе Римана, учёный совет института Клэя вправе решить, можно ли считать данный контрпример окончательным решением проблемы, или же проблема может быть переформулирована в более узкой форме и оставлена открытой (в последнем случае автору контрпримера может быть выплачен небольшой приз).

Теория Янга — Миллса

Задача из области физики элементарных частиц. Требуется доказать, что для любой простой компактной калибровочной группы G {\displaystyle G} квантовая теория Янга — Миллса для пространства R 4 {\displaystyle \mathbb {R} ^{4}} существует и имеет ненулевой дефект массы. Это утверждение соответствует экспериментальным данным и численному моделированию, однако доказать его до сих пор не удалось.

Существование и гладкость решений уравнений Навье — Стокса

Уравнения Навье — Стокса описывают движение вязкой жидкости. Одна из важнейших задач гидродинамики.

Гипотеза Бёрча — Свиннертон-Дайера

Гипотеза связана с уравнениями эллиптических кривых и множеством их рациональных решений.

Новости по теме